bluebit

.NET Matrix Library (NML) 4.1

Software brochure and performance benchmarks

Linear Algebra for the .NET Framework

Bluebit .NET Matrix Library provides classes for object-oriented linear algebra for the
.NET platform.

It can be used to solve systems of simultaneous linear equations, least-squares solutions
of linear systems of equations, eigenvalues and eigenvectors problems, and singular val-
ue problems. Also provided are the associated matrix factorizations such as Eigen, LQ, LU,
Cholesky, QR and SVD.

The above functionality is present for both real and complex matrices. Two analogous
sets of classes are provided for real and complex matrices, vectors and factorizations.

Get the best of two worlds

While exposing an easy to use and powerful interface, NML does not sacrifice any per-
formance. Highly optimized BLAS and the standard LAPACK routines are used within the
library and provide fast execution and accurate calculations.

NML has been developed as a mixed mode C++ project, combining together managed
and unmanaged code and delivering the best of both worlds; the speed of native C++
code and the feature-rich and easy to use environment of the NET Framework.

Internally it uses highly optimized code at processor level. This means that the processor
type is detected at runtime and different brunches of code are executed in order to
achieve optimal performance.

Native 64-bit support

Starting from version 4.1, NML is available in separate builds each one targeting either
the 32-bit or the 64-bit platform.

o The 32-bit version of NML 4.1 will run on all the 32-bit versions of Windows
and also will run on 64-bit Windows as a 32-bit process.

® The 64-bit version of NML 4.1 will run as a native 64-bit process on 64-bit
versions of Windows offering an additional 10 to 30% performance boost.

Parallelism

NML 4.1 makes full use of the capabilities of modern processors. It achieves impressive
performance gains through parallelism provided by the newest multi-core architectures.
Applications using NML 4.1 can benefit from its multithreading capabilities in either of
the following ways:

® On single threaded applications, NML 4.1 is by default configured to distri-
bute the computational workload on all physical cores of the machine, dra-
matically reducing the execution time especially when it comes to operations
on large matrices.

® Being thread safe, NML 4.1 allows its use in threaded applications. Threads
defined in client applications can use objects of the library and execute me-
thods independently of other threads.

Starting from version 4.1, new static methods have been introduced allowing a more
precise control of the threading behavior of the library.

Performance Benchmarks

The following benchmarks were run on a machine with the following configuration:

Processor: Intel® Core™2 Quad CPU Q6600 @2.4GHz
Motherboard: ASUS P5K, Intel P35
RAM: 2.00 GB DDR2 1066MHz
0S: Windows Vista 32-bit / Windows Vista 64-bit

The benchmark program we have used was the one found in the samples folder of NML
installation. Time measurement is based on the functions of the windows APl QueryPer-
formanceCounter and QueryPerformanceFrequency. In case of the matrix multiplication
benchmark the command line was:

bench /MUL 50 100 250 500 1000 2000 3000 4000 5000 6000 >logMult.txt

We measured timings for NML 4.1 32-bit on Windows Vista 32-bit and for NML 4.1 64-
bit on Windows Vista 64-bit.

The results are shown in the following charts:

Matrix Multiplication

18
16
14 /
Il
12 o
III III
10 o/
y 4
8 I, III
Seconds /,
6 II) 4
I,
) - I,
4) V4
I, -
2 —
. _ﬁé
1000 2000 3000 4000 5000 6000
—NML 4.1 32-bit| 0.102 0.679 2.164 5.058 9.055 15.329
——NML 4.1 64-bit| 0.073 0.548 1.681 3.854 7.479 12.901
Matrix size m,k,n
LU Decomposition
7
6
II
II
5 I/
I/II
4 y s
y 4
y 4 II
Seconds 3 —
/ 4
y 4
2 >
ol
o
1
—
0 =
1000 2000 3000 4000 5000 6000
—NML4.1 32-bit| 0.071 0.279 0.890 1.901 3.578 5.885
——=NML 4.1 64-bit| 0.043 0.265 0.829 1.656 3.125 5.119

Matrix size nxn

Solve AxX=B

7
6
y 4
y 4
y 4
5 g
y 4 y 4
y 4 y 4
y 4 y 4
4 —
y 4
g | J
y 4
Seconds 3 /7
4V -
y4
2 £~
P
1
0
1000 2000 3000 4000 5000 6000
—NML 4.1 32-bit| 0.085 0.302 0.923 1.937 3.813 6.000
——NML 4.1 64-bit| 0.036 0.246 0.808 1.947 3.155 5.050
Matrix size nxn
Matrix Inverse
4
3.5
Il
3 /
y 4
II
2.5 S/
II
y 4
2 4 I,
y 4
Seconds —
15 S
A,
II
1 s I
- I‘
0.5 —
0
500 1000 1500 2000 2500 3000
—NML 4.1 32-bit| 0.026 0.286 0.576 1174 2.069 3.365
——=NML 4.1 64-bit| 0.027 0.135 0.438 0.956 1.769 2.872

Matrix size nxn

14

12

10

Seconds 6

0

QR Decomposition

NN

\\\

NN
\\\\

S 4

7
'

1000

2000

3000

4000

5000

6000

——NML 4.1 32-bit

0.082

0.539

1.634

3.632

6.690

11.463

~——NML 4.1 64-bit

0.063

0437

1.405

3.180

6.037

10.130

Matrix size nxn

50
45
40
35
30
25
Seconds 20
15
10
5
0

Singular Value Decomposition

500

1000

1500

2000

2500

3000

——NML 4.1 32-bit

0.249

1.235

4.736

12574

24.840

45.286

——NML 4.1 64-bit

0.188

0.920

4.327

11.595

24.297

41.289

Matrix size nxn

Symmetric Eigenvalues-Eigenvectors

16
14
I,
12 /7
g |7
V4
10 II V4
/7
y 4
8 4 4
g | J
Seconds A7
6 7~
it
7 | 7
4 ot
e
2 —
0 1
1000 | 1200 | 1400 | 1600 | 1800 | 2000 | 2200 | 2400
—NML 4.1 32-bit| 1.148 | 1.858 | 2.777 | 4.067 | 5.782 | 8.132 |10.756(13.890
———NML 4.1 64-bit| 0.964 | 1.316 | 2.397 | 3.500 | 5.092 | 7.009 | 9.593 |(12.341
Matrix size nxn
General Eigenvalues-Eigenvectors
40
35 y i
y 4
30 i - 4
II y 4
y 4
25 S
y 4
V4
20 II y 4
y 4
Seconds 7/
15 IAI
) 4 II
S
10 i
/'
5
?
0
600 800 1000 1200 1400 1600 1800
—NML 4.1 32-bit| 1.812 2.832 4,976 8.855 | 14.504 | 22.926 | 31.903
—=NML 4.1 64-bit| 1.371 2.936 6.112 | 10.853 | 17.374 | 26.282 | 37.197

Matrix size nxn

Note:

The above results are indicative only. Users should test and verify performance in their
own environment.

	Linear Algebra for the .NET Framework
	Get the best of two worlds
	Native 64-bit support
	Parallelism
	Performance Benchmarks

